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1. The value of Ric

Kantha (2003, hereafter Kantha) begins his note com-
mentary on our paper (Cheng et al. 2002, hereafter
CCH) by recognizing that the CCH model is the first
to have removed a major stumbling block in the appli-
cation of Reynolds stress models (RSMs) to geophysical
flows. These models, initiated in the 1970s (Mellor
1973; Mellor and Yamada 1974, 1982; called MY
models) persistently predicted that turbulence would
cease to exist at a value of the Richardson number Ri
given by

Ri 5 0.19,c (1a)

while a large variety of data indicated that the true value
is some 5 times larger:

Ri ; 1.c (1b)

It is usually stated that it was only in 1985 when it
was realized (Martin 1985) that (1a) produced an un-
realistically shallow ocean mixed layer (ML), whereas
(1b) gave much more realistic ML depths. However,
before Martin’s important contribution and even before
the MY models, Woods (1969) presented a very physical
argument that led him to conclude in favor of (1b) rather
than (1a). Regrettably, Woods’ discussion, which is all
the more important as it is not based on any specific
model, is hardly ever cited in this context. Thus, before
and after the MY models appeared, there were both
theoretical (Woods 1969) and practical (Martin 1985)
reasons to expect that any reliable mixing model should
yield (1b) rather than (1a).

Twelve years after the 1982 MY paper, the failure by
MY-like models to produce (1b) prompted Large et al.
[1994; K-Profile Parameterization (KPP) model] to sus-
pect that the turbulence-based models may be structur-
ally incapable of producing the correct amount of mix-
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ing in stably stratified flows. Large et al. (1994) there-
fore adapted to the ocean case a heuristic mixing model
previously developed by Troen and Mahrt (1986) for
the atmosphere. While it is difficult to argue against the
logic underlying the KPP model as of 1994, it seems
fair to argue that if the CCH model and (1b) had existed
in 1994, the arguments that motivated the KPP model
would not have existed.

The main point of the CCH model is that it is not the
RSM methodology per se that is unable to produce (1b);
it is the quality of its physical content that determines
the performance of the model.

2. The parameters l2, l3

As recognized by Kantha, the CCH model strived to
include not only more complete pressure–velocity and
pressure–temperature correlations, but also to eliminate
the uncertainties regarding some of the constants by
using results of the renormalization group (RNG; Can-
uto and Dubovikov 1996a,b; 1997a,b,c; 1998, 1999;
Canuto et al. 1996, 1997a,b,c; 1999a,b) that bypassed
and resolved the limitations of a previous attempt to
apply RNG to turbulence (Yakhot and Orzsag 1986).

Regrettably, however, not all the constants could be
determined from such an a priori method. Two of them,
l2 and l3, govern the difference of the lateral and ver-
tical components 2, 2 of the turbulent kinetic energyy w
e 5 (1/2)( 2 1 2 1 2), and their choice is the mainu y w
subject of Kantha’s note.

a. The data

Kantha claims that the data regarding 2 and 2 arey w
not well sorted out as yet. Thus, one can choose, as
CCH did,

2 2l ± l , y ± w ,2 3 (2a)

or as Kantha suggests,
2 2l 5 l , y 5 w .2 3 (2b)
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FIG. 1. The Lumley triangle with the CCH, Kantha’s, and
MY models.

From Mellor and Yamada’s (1982) early statement ‘‘the
fact that y and w are equal is not supported by the data,’’
to the more recent work by Shih and Shabbir (1992), it
follows that l2 ± l3. In the planetary boundary layer
(PBL) case, Fig. 9 of Moeng and Sullivan (1994) shows
the sequence

2 2 2w , y , u , (2c)

which confirms the Mellor–Yamada assertion that y ±
w. More recent data on turbulence over hills, specifically
measurements from the Environmental Protection
Agency (EPA) Russian Hill (RUSHIL) experiment give
(Ying and Canuto 1996, 1997; Ying et al. 1994)

2y /e 2 2/3 5 0.384, (2d)
2w /e 2 2/3 5 20.309. (2e)

Kantha’s choice, l2 5 l3, cannot explain (2d) and (2e),
whereas CCH’s choice of l2,3 does.

b. Geometrical interpretation

Consider the dimensionless invariants II and III,
which are defined as follows (Lumley and Newman
1977; Lumley 1978; Shih and Shabbir 1992):

2 328e II 5 b b , 24e III 5 b b b , (2f )i j i j i j jk ki

where

b 5 u u 2 (2e/3)d . (2g)i j i j i j

Lumley and Newman (1977) and Lumley (1978) have
devised what has become known as the ‘‘Lumley tri-
angle’’ whose axes are

1/3 1/21 1
j [ III , h [ 2 II . (2h)1 2 1 22 3

The triangle is presented in Fig. 1. All turbulent flows
are represented by points inside the triangle. Flows on
the left-hand side of the triangle are axisymmetric, pan-
cake turbulence:

j 5 2h. (2i)

Flows on the right-hand side of the triangle are axisym-
metric, cigar-shaped turbulence:

j 5 1h. (2j)

Using the above expressions, we have computed j
and h for the neutral case with l2 ± l3 (CCH), l2 5
l3 (Kantha and MY models). As one can see in Fig. 1,
Kantha’s model corresponds to having a cigar-shaped
turbulence. However, this result is not consistent with
the data by Moeng and Sullivan (1994) presented in Eq.
(2c), which correspond to a shear driven turbulence with
only slight stable stratification. On the other hand, the
CCH model point in Fig. 1, while showing some ten-
dency toward cigar-shaped turbulence, is away from the
extreme j 5 h case of axisymmetric turbulence, and
thus seems more general. On these grounds, we feel that
CCH’s choice l2 ± l3 is more appropriate than Kantha’s
l2 5 l3.

3. Deardorff’s limitation

To obtain the critical Richardson number Ric, CCH
solved the equation that expresses production equals
dissipation:

S G 2 S G 2 2 5 0,m m h h (3a)

where Gm [ (tS)2 and Gh [ (tN)2. The result is (1b).
On the other hand, Kantha suggests that, in solving (3a)
for Ric, one should account for the Deardorff limitation
on the eddy length scale ,(½q2 5 e):

, , 0.53q /N, or (3b)
2G (max) 5 (0.53B ) ; 100. (3c)h 1

If so, Eq. (3a) becomes
21 max maxS Ri G 2 S G 2 2 5 0,m c h h h (4a)

where
21 max maxS [ S (Ri G , G ),m,h m,h c h h (4b)

the solution of which is

Ri 5 0.52,c (4c)

instead of (1b). We now show that the adoption of (3c)
in (3a) leads to incorrect results.

Let us assume (3c). The general form of the diffu-
sivity (a may mean momentum, heat or salt; constants
5 1; t 5 2e/e) is

2 21 2 21K 5 e e S 5 , N(tN) S .a a a (4d)

Because Ric is defined as the point at which and beyond
which turbulence disappears, the solution of the model
must satisfy the relation

K (Ri ) 5 0.a c (4e)

Because by (3c), tN is finite at Ric and because Sa(Ric)
does not vanish, the only way to satisfy (4e) is for l to
vanish at Ric 5 0.52, which does not occur. Thus, one
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FIG. 2. The values of Gh [ (tN)2 and of the Richardson number
Ri vs height for the PBL. The results are obtained using LES data
from Moeng and Sullivan (1993, personal communication). The Dear-
dorff limitation is clearly valid for all Ri , 0.25 but not for Ri .
0.25.

FIG. 3. The variable Gh vs Ri. This graph clearly exhibits the fact
that for Ri , 0.25, the Deardorff limitation applies. However, for
large values of Ri, it is no longer valid.

concludes that (4e) is actually not satisfied; that is, tur-
bulence is allowed to exist at a point where, by defi-
nition, it should be zero.

The second argument against the use of (3c) in solv-
ing (3a) is as follows. One can prove that Deardorff’s
relation (3c) is valid only for small Ri, and therefore
cannot be used near Ri ; Ric. A physical argument and
published large eddy simulation (LES) data will prove
the point. As Ri → Ric, turbulence gets increasingly
weaker; that is, the nonlinear interactions become in-
creasingly weaker and they no longer break up the large
scales, which are the progenitors of the cascade process.
Large scales are long lived, so much so that, in the limit
of restoration of linearity (zero turbulence), their life-
time becomes very large (t → `). They are stable. Since
this is a model-independent argument, it should be a
warning against applying the Deardorff limitation on
tN in a region where it is known that t → `. In turn,
this leads to the suspicion that Deardorff’s limitation
must not be valid near Ri ; Ric but only for small Ri.

The second argument employs LES data kindly pro-
vided to us by Moeng and Sullivan. Only these LES
data (no turbulence model) were used in constructing
Figs. 2 and 3. In Fig. 2 we plot both Ri and Gh versus
z. The values on the x axis are for both Ri and Gh. In
Fig. 3 we plot directly Gh versus Ri. It is clear that for
all Ri greater than

Ri $ 0.25, (4g)

Gh (LES) becomes larger than Deardorff’s limit (3c).
One observes that Deardorff’s limitation (3c) violates
the LES data at high Ri and thus it should not be used

there. In summary, use of (3c) in solving (3a) has the
following consequences: (a) it gives a nonzero turbu-
lence where, by definition, there is none; (b) at a more
fundamental level, it is applied in a region where it fails
to the maximum extent.

4. Nakanishi’s relation

Kantha writes that the use of Nakanishi relation [Eq.
(35) of CCH] is ‘‘essential for the good agreement of
the CCH results with the Kansas data.’’ However, the
key improvement brought about by CCH and shown in
CCH’s Figs. 7 and 8 occurs mostly in the unstable re-
gion where the Nakanishi relation was not used.

5. Conclusions

In conclusion, we have welcomed Kantha’s com-
ments, for they provided us an opportunity to clarify
several important features of our work.
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